

5. Analytics Workflows

Analytics Workflows

You are probably sick of **discussions about context** and would rather move to data analysis proper.

Very soon. One last thing, then: the **project context**.

Data science is more than just the analysis of data; this is apparent when we look at the typical steps involved in a **data science project.**

Data analysis pieces take place within this larger project context, as well as in the context of a larger **technical infrastructure** or **pre-existing system**.

The "Analytical" Method

As with the **scientific method**, there is a "step-by-step" guide to data analysis:

- statement of objective
- data collection
- data clean-up
- data analysis/analytics
- dissemination
- documentation

Notice that **data analysis** only makes up a small segment of the entire flow.

In practice, the process is quite often **messy**, with steps added in and taken out of the sequence, repetitions, re-takes, etc.

Surprisingly, it tends to work... when conducted correctly.

The "Analytical" Methods

The "Analytical" Methods

In practice, data analysis is often corrupted by:

- Iack of clarity
- mindless rework
- blind hand-off to IT
- failure to iterate

All approaches have a common core

- data science projects are iterative
- (often) non-sequential.

Helping stakeholders recognize this **central truth** makes it easier for data scientists to:

- plan the data science process
- obtain actionable insights

Take-away: there is a lot to consider in advance of modeling and analysis

 data analysis is not just about data analysis.

Data Collection

Data enters the data science pipeline by being collected.

There are various ways to do this:

- data may be collected in a single pass
- it may be collected in **batches**
- it may be collected **continuously**

The **mode of entry** may have an impact on the subsequent steps, including how frequently models, metrics, and other outputs are **updated**.

Data Storage

Once it is collected, data must be **stored**.

Choices related to storage (and **processing**) must reflect:

- how the data is collected (mode of entry)
- how much data there is to store and process (small vs. big)
- the type of access and processing that will be required (how fast, how much, by whom)

Stored data may go **stale** (*figuratively* and *literally*); regular data audits are recommended.

Data Processing

The data must be **processed** before it can be analyzed.

The key point is that **raw data** has to be converted into a format that is **amenable to analysis**, by:

- identifying invalid, unsound, and anomalous entries
- dealing with missing values
- transforming the variables so that they meet the requirements of the selected algorithms

The **analysis** itself is almost anti-climactic: simply run the selected methods or algorithms on the processed data.

Modeling

Data science teams should know:

- data cleaning
- descriptive statistics and correlation
- probability and inferential statistics
- regression analysis
- classification and supervised learning
- clustering and unsupervised learning
- anomaly detection and outlier analysis
- big data/high-dimensional data analysis
- stochastic modeling, etc.

These only represent a **small slice** of the analysis pie (see earlier slide).

No one analyst/data scientist could master all (or even a majority of them) at any moment, but that is one of the reasons why data science is a **team activity**.

Model Assessment and Life After Analysis

Before applying findings, we must first confirm that the model is reaching valid conclusions about the system of interest.

Analytical processes are **reductive:** raw data is transformed into a small(er) **numerical summaries**, which we hope is **related** to the system of interest.

Data science methodologies include an assessment phase

• analytical sanity check: is anything out of alignment?

Beware the **tyranny of past success:** even if the analytical approach has been vetted and has given useful answers in the past, it may not always do so.

Model Assessment and Life After Analysis

When an analysis or model is 'released into the wild', it often takes on a life of its own. When it inevitably ceases to be **current**, there may be little that data scientists can do to remedy the situation.

How do we determine if the current data model is:

- out-of-date?
- no longer useful?
- how long does it take a model to react to a conceptual shift?

Regular audits can be used to answer these questions.

Model Assessment and Life After Analysis

Data scientists rarely have full control over model dissemination.

- results may be misappropriated, misunderstood, shelved, or failed to be updated
- can conscientious analysts do anything to prevent this?

There is no easy answer: analysts should not only focus on the analysis, but also recognize opportunities that arises to **educate stakeholders** on the importance of these auxiliary concepts.

Due to **analytic decay**, the last step in the analytical process is not a **static dead end**, but an invitation to re-iterate to the beginning of the process.

Data Pipelines (First Pass)

In the **service delivery context**, the data analysis process is implemented as an **automated data pipeline** to enable automatic runs.

Data pipelines usually consist of 9 components (5 stages and 4 transitions):

- data collection
- data storage
- data preparation
- data analysis
- data presentation

Data Pipelines (First Pass)

Each components must be **designed** and then **implemented**.

Typically, at least one data analysis pass process has to be done **manually** before the implementation is completed.

Suggested Reading

Analytics Workflows

Data Understanding, Data Analysis, Data Science Data Science Basics

Analytics Workflows

- The "Analytical" Methods
- Data Collection, Storage, Processing, and Modeling
- Model Assessment and Life After Analysis
- Automated Data Pipelines

Session 2

Exercises

Analytics Workflows

- 1. Install <u>R</u> / <u>RStudio</u> (Posit), and packages from the list the instructor will provide.
- 2. Test the installation with examples from the <u>Programming Primer</u> (sections 2 - 4) to make sure that the software performs as expected.