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A CURSORY GLANCE AT BAYESIAN ANALYSIS
SPECIAL TOPICS IN A.I. AND DATA SCIENCE
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“Classical data analysts need a large bag of clever tricks to unleash on their data, but 
Bayesians only ever really need one.”

(author unknown)
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PLAUSIBLE REASONING
A CURSORY GLANCE AT BAYESIAN ANALYSIS

“A decision was wise, even though it lead to disastrous consequences, if the evidence at hand indicated it was the 
best one to make; and a decision was foolish, even though it lead to the happiest possible consequences, if it was 

unreasonable to expect those consequences.” 
Herodotus, in Antiquity
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PLAUSIBLE REASONING

Consider the following scenario [Jaynes, 2003]:

§ you are walking down a deserted street at night

§ you hear a security alarm, look across the street, and see a store with a broken window

§ someone wearing a mask crawls out of the broken window with a bag full of smart phones

You conclude that the person crawling out of the store is stealing merchandise from
the store.
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PLAUSIBLE REASONING

How do you come to that conclusion? It cannot come from a logical deduction based
on evidence.

Indeed, the person crawling out of the store could have been its owner who, upon
returning from a costume party, realized that they had misplaced their keys just as a
passing truck was throwing a brick in the store window, triggering the security alarm.
The owner then went into the store to retrieve items before they could be stolen,
which is when you happened unto the scene.

The original reasoning process is not deductive, but it is at least plausible.
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DEDUCTIVE VS. PLAUSIBLE REASONING

Deductive (ideal) reasoning: 

If 𝐴 is true, then 𝐵 is true
𝐴 is true
________________________________________________________________________________________________________________________________________

???

If 𝐴 is true, then 𝐵 is true
𝐵 is false
________________________________________________________________________________________________________________________________________

???

Inductive (plausible) reasoning: 

If 𝐴 is true, then 𝐵 is true
𝐵 is true
________________________________________________________________________________________________________________________________________

???

If 𝐴 is true, then 𝐵 is true
𝐴 is false
________________________________________________________________________________________________________________________________________

???
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DEDUCTIVE VS. PLAUSIBLE REASONING

Deductive (ideal) reasoning: 

If 𝐴 is true, then 𝐵 is true
𝐴 is true
________________________________________________________________________________________________________________________________________

𝐵 is true

If 𝐴 is true, then 𝐵 is true
𝐵 is false
________________________________________________________________________________________________________________________________________

𝐴 is false

Inductive (plausible) reasoning: 

If 𝐴 is true, then 𝐵 is true
𝐵 is true
________________________________________________________________________________________________________________________________________

𝐴 is more plausible (why?)

If 𝐴 is true, then 𝐵 is true
𝐴 is false
________________________________________________________________________________________________________________________________________

𝐵 is less plausible (why?)
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DEDUCTIVE VS. PLAUSIBLE REASONING

Inductive (plausible) reasoning: 

If 𝐴 is true, then 𝐵 is more plausible
𝐵 is true
________________________________________________________________________________________________________________________________________

𝐴 is more plausible

If “the person is a thief” (𝐴 is true), you would not be surprised to “see them crawling
out of the store with a bag of phones” (𝐵 is plausible). You do “see them crawling out
of the store with a bag of phones” (𝐵 is true). Therefore, you would not be surprised if
“the person were a thief” (𝐴 is plausible).
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DEDUCTIVE VS. PLAUSIBLE REASONING

Deductive reasoning Plausible reasoning

Cause
Possible
Causes

Effects 
or

Outcomes

Observations

[Sivia, Skilling, Data Analysis: A Bayesian Tutorial]
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DISCUSSION

In Tom Stoppard’s 1966 play Rosencrantz and Guildenstern are Dead, the main
characters bet on coin flips. Rosencrantz wins by flipping heads 92 times in a row.

This result is of course not impossible, but is it plausible? If this happened to you,
what would you conclude?
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THE RULES OF PROBABILITY
A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS
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WHAT IS PROBABILITY?

Inductive reasoning requires methods to evaluate the validity of various propositions.

For Bernouilli, Bayes, and Laplace (1700’s to 1800’s), a proposition’s probability
represents the degree-of-belief in the proposition (i.e., its plausibility).

Subsequent scholars found this vague and subjective (how can you be sure that my
degree-of-belief matches yours?) and they redefined probability as the long-run
relative frequency of an event, given infinite repeated trials.
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WHAT IS PROBABILITY?

A forecast calling for rain with 90% probability doesn’t mean the same thing to
Bayesians and frequentists:

¡ in the Bayesian framework, this means that the forecaster is 90% certain that it will rain;

¡ in the frequentist framework, this means that, historically, it rained in 90% of the cases when the
conditions were as they currently are.

The Bayesians framework is more aligned with how humans understand probabilities
(92 heads in a row probably mean that that the coin is biased, right?), but how can
we be certain that the degree-of-belief is a well-defined concept?
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WHAT IS PROBABILITY?

As it happens, there is a well-defined way to determine the rules of probability, based
on a small list of axioms [Jaynes, 2003; Cox, 1946]:

1. if a conclusion can be reasoned out in more than one way, then every possible way must
lead to the same result;

2. all (known) evidence relevant to a question must be taken into consideration;

3. equivalent states of knowledge must be assigned the same probabilities;

4. if we specify how much we believe something is true, we have implicitly specified how much
we believe it’s false, and

5. if we have specified our degree-of-belief in a first proposition, and then our degree-of-belief
in a second proposition if we assume the first one is true, then we have implicitly specified
our simultaneous degree-of-belief in both propositions being true.
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RULES OF PROBABILITY

Let 𝐼 denote relevant background information; 𝑋, 𝑌, 𝑌' denote various propositions,
and −𝑋 denote the proposition that 𝑋 is false.

The plausibility of 𝑋 given 𝐼 is denoted by 𝑃(𝑋|𝐼), ranging from 0 (false) to 1 (true).

Sum Rule: 𝑃(𝑋|𝐼) + 𝑃(−𝑋|𝐼) = 1
Product Rule: 𝑃 𝑋, 𝑌 𝐼 = 𝑃 𝑋 𝑌, 𝐼 ×𝑃 𝑌 𝐼

Bayes’ Theorem: 𝑃 𝑋 𝑌, 𝐼 ×𝑃 𝑌 𝐼 = 𝑃 𝑌 𝑋, 𝐼 ×𝑃 𝑋 𝐼

Marginalization Rule: 𝑃(𝑋|𝐼) = ∑𝑃(𝑋, 𝑌'|𝐼), where {𝑌'} are exhaustive, disjoint
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CONDITIONAL PROBABILITIES 

We then have an interest in determining the likelihood of an event occurring given
that another event (or series of events) has occurred.

Examples include:

¡ the probability that a train arrives on time given that it left on time

¡ the probability that a PC crashes given the operating system installed 

¡ the probability that a bit is transmitted over a channel is received as a 1 given that the bit 
transmitted was a 1

¡ the probability that a website is visited given its number of in-links

¡ the rules of probability!
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CONDITIONAL PROBABILITIES

A conditional probability is the probability of an event taking place given that
another event occurred.

The conditional probability of 𝐴 given 𝐵, 𝑃(𝐴|𝐵), is defined as

𝑃 |𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐵

=
𝑃 𝐴, 𝐵
𝑃 𝐵

The probability that two events 𝐴 and 𝐵 both occur simultaneously is obtained by
applying the multiplication rule:

𝑃 𝐴, 𝐵 = 𝑃 𝐵 𝑃 |𝐴 𝐵 = 𝑃 𝐴 𝑃 |𝐵 𝐴
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EXERCISE – CONDITIONAL PROBABILITIES

Example (a classic): a family has two children (not twins). What is the probability that
the youngest child is a girl given that at least one of the children is a girl? Assume
that boys and girls are equally likely to be born.

Solution: Let 𝐴 and 𝐵 be the events that the youngest child is a girl and that at least 
one child is a girl, respectively:

𝐴 = 𝐺𝐺, 𝐵𝐺 , 𝐵 = {𝐺𝐺, 𝐵𝐺, 𝐺𝐵}

Then 𝑃 |𝐴 𝐵 = 7 8∩9
7 9

= 
:
;

(not ½, as one might naively assume).  
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EXERCISE – CONDITIONAL PROBABILITIES

We will first try to answer this question by generating a number of trials and
identifying successful events (a frequentist approach?)



data-action-lab.com

EXERCISE – CONDITIONAL PROBABILITIES

Example (a classic): a family has two children (not twins). What is the probability that
the youngest child is a girl given that at least one of the children is a girl? Assume
that boys and girls are equally likely to be born.

Solution: Let 𝐴 and 𝐵 be the events that the youngest child is a girl and that at least 
one child is a girl, respectively:

𝐴 = 𝐺𝐺, 𝐵𝐺 , 𝐵 = {𝐺𝐺, 𝐵𝐺, 𝐺𝐵}

Then 𝑃 |𝐴 𝐵 = 7 8∩9
7 9

= 
:
;

(not ½, as one might naively assume).  
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BAYES’ THEOREM
A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS
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BAYES’ THEOREM

The sum rule and the product rules are the basic rules of probability.

Bayes' Theorem and the Marginalization Rule are simple corollaries of these basic
rules.

Bayes' Theorem is sometimes written is a slightly different form

𝑃(𝑋|𝑌, 𝐼) =
𝑃(𝑌|𝑋, 𝐼)×𝑃(𝑋|𝐼)

𝑃(𝑌|𝐼)
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BAYES’ THEOREM

Set-up: assume that an experiment has been conducted to determine the degree of
validity of a particular hypothesis, and that experimental data has been collected.

The central data analysis question: given everything that was known prior to the
experiment, does the collected data support (or invalidate) the hypothesis?

Throughout, let 𝑋 denote the proposition that the hypothesis in question is true, let 𝑌
denote the proposition that the experiment yielded the actual observed data, let 𝐼
denote (as always) the relevant background information.
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BAYES’ THEOREM

Central data analysis question (reprise):

What is the value of 𝑃 hypothesis is true observed data, 𝐼)?

Problem: this is nearly always impossible to compute directly.

Solution: using Bayes' Theorem,

𝑃 hypothesis data, 𝐼) =
𝑃 data hypothesis, 𝐼)×𝑃 hypothesis 𝐼)

𝑃 data 𝐼) ,

it may be that the terms on the right are easier to compute.
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EXERCISE – WORLD TRADE CENTER

“Consider a somber example: the September 11 attacks. Most of us would have
assigned almost no probability to terrorists crashing planes into buildings in
Manhattan when we woke up that morning. But we recognized that a terror attack
was an obvious possibility once the first hit the World Trade Center. And we had no
doubt we were being attacked once the second tower was hit. Bayes’ Theorem can
replicate this result.”

[Silver, The Signal and the Noise, pp. 247-248]
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EXERCISE – WORLD TRADE CENTER (1ST PLANE)

[Silver, The Signal and the Noise, pp. 247-248]

PRIOR PROBABILITY

Initial estimate of how likely it is that terrorists would 
crash planes into Manhattan skyscrapers 𝑃 𝐵 𝐼 = 𝑥 0.005%

A NEW EVENT OCCURS: FIRST PLANE HITS WTC

Probability of plane hitting if terrorists are attacking 
Manhattan skyscrapers 𝑃 𝐴 𝐵, 𝐼 = 𝑦 95%+

Probability of plane hitting if terrorists are not attacking 
Manhattan skyscrapers (i.e. accident) 𝑃 𝐴 B𝐵, 𝐼 = 𝑤 0.008%*

POSTERIOR PROBABILITY

Revised estimate of probability of terror attack, 
given first plane hitting WTC

𝑃 𝐵 𝐴, 𝐼 =
𝑦𝑥

𝑦𝑥 + 𝑤 (1 − 𝑥) 37%+

*2 incidents in the previous 25,000 days
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EXERCISE – WORLD TRADE CENTER (2ND PLANE)

[Silver, The Signal and the Noise, pp. 247-248]

PRIOR PROBABILITY

Revised estimate of probability of terror attack 
(now that we know about the first plane hitting WTC) 𝑃 𝐵 𝐼 = 𝑥# 37%+

A NEW EVENT OCCURS: FIRST PLANE HITS WTC

Probability of plane hitting if terrorists are attacking 
Manhattan skyscrapers 𝑃 𝐴 𝐵, 𝐼 = 𝑦 95%+

Probability of plane hitting if terrorists are not attacking 
Manhattan skyscrapers (i.e. accident) 𝑃 𝐴 B𝐵, 𝐼 = 𝑤 0.008%*

POSTERIOR PROBABILITY

Revised estimate of probability of terror attack, 
given second plane hitting WTC 𝑃 𝐵 𝐴, 𝐼 =

𝑦𝑥#

𝑦𝑥# + 𝑤 (1 − 𝑥#)
99.99%+

*2 incidents in the previous 25,000 days
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BAYES’ THEOREM

In the vernacular, the probabilities

¡ 𝑃 hypothesis 𝐼) of the hypothesis being true prior to the experiment is the prior;

¡ 𝑃 hypothesis data, 𝐼) of the hypothesis being true once the experimental data is taken into
account is the posterior;

¡ 𝑃 data hypothesis, 𝐼) of the experimental data being observed assuming that the hypothesis is
true is the likelihood, and

¡ 𝑃 data 𝐼) of the experimental data being observed independently of any hypothesis is the
evidence.

A given hypothesis includes a (potentially implicit) model which can be used to
compute or approximate the likelihood.
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BAYES’ THEOREM

Determining the prior is a source of considerable controversy

¡ conservative estimates (uninformative priors) often lead to reasonable results

¡ in the absence of information, go with maximum entropy prior

The evidence is harder to compute on theoretical grounds – evaluating the
probability of observing data requires access to some model as part of 𝐼. Either

¡ that model was good, so there’s no need for a new hypothesis

¡ that model was bad, so we dare not trust our computation
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BAYES’ THEOREM

Thankfully, the evidence is rarely required on problems of parameter estimation
(although it is crucial for model selection):

¡ prior to the experiment, there are numerous competing hypotheses

¡ the priors and likelihoods will differ, but not the evidence

¡ the evidence is not needed to differentiate the various hypotheses

Bayes' Theorem is often presented as

𝑃 hypothesis data, 𝐼 ∝ 𝑃 data hypothesis, 𝐼 ×𝑃 hypothesis 𝐼

or simply as posterior ∝ likelihood × prior, that is to say, beliefs should be updated
in the presence of new information.
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DISCUSSION

What would it take for you to update …

¡ … your belief in the existence/non-existence of a deity?

¡ … your belief in the shape of the Earth? 

¡ … your political affiliation?

¡ … your allegiance to a sport team?

¡ … your belief in the effectiveness of homeopathic remedies?

¡ … your belief in the effectiveness of Bayesian analysis?  
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EXERCISE – FALSE POSITIVE TESTING

Suppose that a test for a particular disease has a very high success rate. If a patient

¡ has the disease, the test accurately reports a ’positive’ with probability 0.99;

¡ does not have the disease, the test accurately reports a ’negative’ with probability 0.95.

Assume further that only 0.1% of the population has the disease. What is the
probability that a patient who tests positive does not in fact have the disease?
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EXERCISE – FALSE POSITIVE TESTING

Solution: let 𝐷 be the event that the patient has the disease, and 𝐴 be the event that
the test is positive. According to Bayes’ Theorem, the probability of a true positive is

𝑃 𝐷 𝐴, 𝐼) =
𝑃 𝐴 𝐷, 𝐼)×𝑃 𝐷 𝐼)

𝑃 𝐴 𝐼)
=

𝑃 𝐴 𝐷, 𝐼)×𝑃 𝐷 𝐼)
𝑃 𝐴 𝐷, 𝐼)×𝑃 𝐷 𝐼) + 𝑃(𝐴| − 𝐷, 𝐼)×𝑃 −𝐷 𝐼)

=
0.99 × 0.001

0.99 × 0.001 + 0.05 × 0.999
≈ 0.019;

the probability of a false positive is thus 1 − 0.019 ≈ 0.981.

Despite the apparent high accuracy of the test, the incidence of the disease is so low
(1 in a 1000) that the vast majority of patients who test positive (98 in 100) do not
have the disease (20 times the proportion before the outcome of the test is known).
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EXERCISE – DRIVING CONDITIONS

A road safety analyst has access to a dataset of fatal vehicle collisions (such as the
NCDB) on roads in a specific region.

The dataset is built using police reports, and it contains relevant collision information
such as:

¡ the severity of the collision, the age of the drivers, the number of passengers in each vehicle, the
date and time of the collision, weather and road conditions, blood alcohol content (BAC), etc.

Let us further assume that the analyst has access to aggregated weather data and
R.I.D.E. (sobriety checkpoint) reports for that region.
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EXERCISE – DRIVING CONDITIONS

Some information may be missing from the police reports at a given moment
(perhaps the coroner has not yet had the chance to determine the BAC level, or
some of the data may have been mistakenly erased and/or corrupted).

For some collisions, we may need to answer either or both of the following questions:

¡ did alcohol play a role in the collision?

¡ did “bad” weather play a role in the collision?

As usual, let 𝐼 denote all relevant information relating to the situation, such as the
snowy months of the year, the incidence of impaired driving in that region, etc.
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EXERCISE – DRIVING CONDITIONS

Our analyst will consider 3 propositions:

¡ 𝐴: a fatal collision has occurred

¡ 𝐵: weather and road conditions were bad

¡ 𝐶: the BAC level of one of the drivers was above 0.08% per volume

and may have an interest in 𝑃(𝐵|𝐴, 𝐼), 𝑃(𝐶|𝐴, 𝐼), 𝑃(𝐵, 𝐶|𝐴, 𝐼), 𝑃(𝐵,−𝐶|𝐴, 𝐼), or
𝑃(−𝐵, 𝐶|𝐴, 𝐼), for instance.
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EXERCISE – DRIVING CONDITIONS

1. Derive an expression to compute the probability that “bad” weather and road
conditions were present at the time of the collision.

2. A Mild Winter scenario: during a mild winter, “bad” weather affected regional
road conditions 5% of the time. The analyst knows from other sources that the
probabilities of fatal collisions given “bad” and “good” weather conditions in the
region over the winter are 0.01% and 0.002%, respectively. If a fatal collision
occurred on a regional road that winter, what is the probability that the weather
conditions were “bad” on that road at that time? Is the result surprising?
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EXERCISE – DRIVING CONDITIONS

3. Not quite as Mild a Winter scenario: let’s assume that the winter was not quite
as mild (perhaps “bad” weather affected regional road conditions 10% of the
time, say). If a fatal collision occurred on a regional road that winter, what is the
probability that the weather conditions were “bad” on that road at that time?
How much of a jump are you expecting compared to question 2?

4. Just how rough of a winter would be necessary before we conclude that a given
fatal collision was more likely to have occurred in “bad” weather?
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EXERCISE – DRIVING CONDITIONS

5. In what follows, we assume that the analyst does not have access to other
sources from which to derive the individual probabilities of fatal collisions given
“bad” and “good” weather conditions in the region. Instead, the analyst has
access to data that suggests that the probability of a fatal collision in “bad”
weather is 𝑘 times as high as the probability of a fatal collision in “good” weather.
Let the probability of “bad” weather be 𝑤 ∈ (0,1). Derive an expression for the
probability that the weather conditions were “bad” on that road at that time,
given that a fatal collision occurred, in terms of 𝑘 and 𝑤.
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EXERCISE – DRIVING CONDITIONS

6. Really Rough Winter scenario: during a really rough winter, “bad” weather
affected road conditions with probability 𝑤 = 0.2. Determine the probabilities
that there were “bad” weather conditions given a fatal collision under 4 different
values: 𝑘 = 0.1, 𝑘 = 1, 𝑘 = 10, 𝑘 = 100. Which of these scenarios is most likely?

7. In the next scenario, we assume that the traffic flow changes depending on the
weather; while some individuals need to be on the roads no matter the conditions,
others might tend to avoid the roads when the conditions are “bad”. Make
whatever assumptions are necessary and analyze the situation as you have done
in the previous questions.

8. Repeat the process for the other conditional probabilities of interest.
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EXERCISE – MONTY HALL PROBLEM

(Another classic) A lifetime’s supply of poutine is placed randomly behind one of
three identical doors. You are asked to pick a door. One of the doors you have not
selected is opened, revealing an empty room. You are given the option of changing
your pick. What is your optimal strategy?

1. Determine the ideal strategy using a simulation.

2. Analyze a similar situation (for 100 doors instead of 3) using Bayes’ Theorem.

3. Analyze the situation using Bayes’ Theorem.
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EXAMPLE: THE FAIR (?) COIN
A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS
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THE FAIR (?) COIN – SET-UP

I brought back a souvenir coin from a trip
to a strange and distant land.

I have been flipping it pretty much non-
stop since I’ve returned. You can see the
proportion of heads I obtained for 4, 8,
and 16 tosses.

At first, I thought the coin might be
biased, but the proportion of heads
seems to inch its way towards 50%...
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THE FAIR (?) COIN – PRIORS

Perhaps the coin isn’t fair, coming as it
does from a strange and distant land…

Let’s denote the coin’s bias by 𝐻, i.e. the
probability of flipping a head on a toss
(𝐻 ≈ 0.5: regular unbiased coins, 𝐻 ≈ 0
or 𝐻 ≈ 1: highly biased coins).

A prior for this scenario is a function
𝑃 bias = 𝐻 = 𝑃(𝐻|𝐼), for 0 ≤ 𝐻 ≤ 1.



data-action-lab.com

THE FAIR (?) COIN – PRIORS

Perhaps the coin isn’t fair, coming as it
does from a strange and distant land…

Let’s denote the coin’s bias by 𝐻, i.e. the
probability of flipping a head on a toss
(𝐻 ≈ 0.5: regular unbiased coins, 𝐻 ≈ 0
or 𝐻 ≈ 1: highly biased coins).

A prior for this scenario is a pdf function
𝑃 bias = 𝐻 = 𝑃(𝐻|𝐼), for 0 ≤ 𝐻 ≤ 1.

I have no idea… I suspect foul play…

It’s a regular coin, you 
numbskull…

The fact that you’re asking makes 
me doubt myself…
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THE FAIR (?) COIN – PRIORS

Why are we working with functions for the prior? In the previous example (Sept. 11
attacks), we only provided a number 𝑃(𝐵|𝐼) = 0.005%.

In fact, we had provided a (discrete) function:

𝑃(𝐵 = 𝑥|𝐼) = V00.005% if 𝑥 = TRUE
99.995% if 𝑥 = FALSE
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THE FAIR (?) COIN – LIKELIHOOD

Let’s assume that the coin has been tossed 𝑁 times in total, and that 𝐾 heads have
been recorded. In this scenario, Bayes' Theorem takes the form:

𝑃 bias = 𝐻│𝐾 heads, 𝑁 tosses; 𝐼 ∝ 𝑃 𝐾 heads, 𝑁 tosses bias = 𝐻, 𝐼 ×𝑃 bias = 𝐻 𝐼 .

The likelihood is the probability of observing 𝐾 heads in 𝑁 tosses with a bias of 𝐻.
If, as part of 𝐼, the tosses are independent (i.e. the result of one toss does not affect
the others), then the likelihood is given by the binomial distribution

𝑃 𝐾 heads, 𝑁 tosses bias = 𝐻, 𝐼 = 𝑁
𝐾 𝐻i(1 − 𝐻)jki.
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THE FAIR (?) COIN – POSTERIOR(S)

Combining both of these together, we get

𝑃 𝐻│𝐾 heads in 𝑁 tosses; 𝐼 ∝ 𝐻i 1 − 𝐻 jki×𝑃l 𝐻 𝐼 ,

where 𝑖 = 1, 2, 3, or 4.

We should be able to estimate the bias 𝐻∗ by studying the posterior distribution for
each of the 4 priors, for various number of throws 𝑁.
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THE FAIR (?) COIN  – POSTERIORS – NON-INFORMATIVE PRIOR

With a non-informative prior, the sought
posterior is simply proportional to the
likelihood.

Note that the central limit theorem seem
to kick in after ~30 tosses.

After 128 tosses (with this specific series
of tosses), we are fairly certain that the
coin must be biased (0.25 ≤ 𝐻∗ ≤ 0.40?)
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THE FAIR (?) COIN  – POSTERIORS – FOUL PLAY PRIOR

With a foul play prior, we suspect early
on that the bias is smaller than 0.5; the
subsequent series of tosses moves the
bias to a value 0.25 ≤ 𝐻∗ ≤ 0.40 fairly
quickly, as was the case with the non-
informative prior.

Note the shrinking of the posterior with
an increasing number of tosses.
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THE FAIR (?) COIN – POSTERIORS – REGULAR COIN PRIOR

With a regular coin prior, early results
do not strongly suggest that the coin is
biased (the prior gives little credence to
the notion that the bias could lie in
0.25 ≤ 𝐻∗ ≤ 0.40).

Note the smoother convergence of the
posterior.
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THE FAIR (?) COIN – POSTERIORS – DOUBTFUL PRIOR

With a doubtful prior, the competing
hypotheses compete before converging
to a bias in 0.25 ≤ 𝐻∗ ≤ 0.40.

Note the slower convergence to a
gaussian posterior.
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EXAMPLE: THE SALARY QUESTION
A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS
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THE SALARY QUESTION – SET-UP

Income information has been collected
for 4782 individuals, with demographics.

The table to the right shows some of the
summary statistics for the dataset.

Question: is there a link between the
demographic information and income?
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THE SALARY QUESTION – SET-UP

How could you answer this question? 
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THE SALARY QUESTION – SET-UP

What if you had reason to suspect that reported incomes follow a (potentially)
different distribution for each group?

In the Bayesian framework, you would be interested in the posterior distribution

𝑃 parameters|data, 𝑖, 𝐼 , 𝑖 = 1,… , 12.

If we assume (for no particular good reason) that the reported incomes are normally
distributed for each group, then we seek

𝑃 𝜇l, 𝜎l|reported incomes in group 𝑖, 𝐼 , 𝑖 = 1,… , 12.
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THE SALARY QUESTION – PRIORS

What the priors 𝑃 𝜇l, 𝜎l|𝐼 , 𝑖 = 1,… , 12 could be is not easy to answer. One could
naively pick a joint distribution which peaks at the sample mean �̅�l and standard
deviation 𝑠l for each group 𝑖, but there are sampling design issues associated with
this approach.

Why not select, instead, a prior “which expresses complete ignorance except for
the fact that 𝜇l is a location parameter and 𝜎l is a scale parameter” [Janyes, 2003;
Oliphant; 2006]. This translates into using a prior 𝑃{ 𝜇l, 𝜎l|𝐼 ∝ 𝜎lk{.

For comparison’s sake, we will also consider the prior 𝑃: 𝜇l, 𝜎l|𝐼 ∝ 𝜇l|}}𝜎lk~.
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THE SALARY QUESTION – PRIORS

What could those priors represent, in the real world? What happens to the
probabilities when 𝜎l increases? When 𝜇l increases?

Note, as well, that these ”priors” are not normalizable over the positive quadrant in
𝜇, 𝜎 -space. Instead, we only consider them over a suitable finite sub-region.
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THE SALARY QUESTION – PRIORS 

𝑃{ 𝜇l, 𝜎l|𝐼 𝑃: 𝜇l, 𝜎l|𝐼

*green: high, red: low

𝜇l 𝜇l

𝜎l 𝜎l



data-action-lab.com

THE SALARY QUESTION – LIKELIHOOD

Let’s denote the number of observations in group 𝑖 by 𝑁l. The likelihood is the
probability

𝑃 reported incomes 𝑥',l in group 𝑖 | 𝜇l, 𝜎l, 𝐼 , 𝑖 = 1,… , 12.

We’ve assumed normality for any given observation. If we assume further that all
observations are independent, then

𝑃 𝑥',l | 𝜇l, 𝜎l, 𝐼 ∝�
'�{

j�

𝜎lk{ exp
− 𝜇l − 𝑥',l

:

2𝜎l:
, 𝑖 = 1,… , 12.
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THE SALARY QUESTION – POSTERIOR(S)

Combining both of these together, we get

𝑃{ 𝜇l, 𝜎l| 𝑥',l , 𝐼 ∝ 𝜎l
k(j��{)�

'�{

j�

exp
− 𝜇l − 𝑥',l

:

2𝜎l:
,

and

𝑃: 𝜇l, 𝜎l| 𝑥',l , 𝐼 ∝ 𝜇l|}}𝜎l
k(j��~)�

'�{

j�

exp
− 𝜇l − 𝑥',l

:

2𝜎l:
,

for 𝑖 = 1,… , 12 over some suitable sub-region in parameter space.
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THE SALARY QUESTION – POSTERIORS – GROUP 1

𝑃{ 𝜇{, 𝜎{| 𝑥',{ , 𝐼 𝑃: 𝜇{, 𝜎{| 𝑥',{ , 𝐼

*green: high, red: low

𝜇{ 𝜇{

𝜎{ 𝜎{
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THE SALARY QUESTION – POSTERIORS – GROUP 1

𝑃{ 𝜇{| 𝑥',{ , 𝐼

𝑃: 𝜎{| 𝑥',{ , 𝐼

*green: high, red: low

𝜇{ 𝜇{

𝜎{ 𝜎{

𝑃{ 𝜎{| 𝑥',{ , 𝐼

𝑃: 𝜇{| 𝑥',{ , 𝐼
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THE SALARY QUESTION – EXERCISE

Using the Excel spreadsheet, estimate the parameters 𝜇l, 𝜎l , 𝑖 = 1,… , 12. 

*green: high, red: low
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EXAMPLE: MONEY ($ BILL Y’ALL)
A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS
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MONEY ($ BILL Y’ALL) – THE SET-UP

The question: how many 5$ dollar bills are there in circulation?

The problem: we cannot count them all.

[based on Bååth, Introduction to Bayesian Data Analysis with R]
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MONEY ($ BILL Y’ALL) – THE SET-UP

The solution: “catch and release”

1. Capture a few 5$ bills.

2. Mark them and put them back in circulation.

3. At some later point, capture a few 5$ bills.

4. Count how many are marked. 

For instance, 𝑥 = 500 bills might have been marked initially; 𝑦 = 300 bills might have
been re-captured at stage 3, and 𝑤 = 127 of which were marked.

What is the most probably number of bills 𝑁 in circulation?

[based on Bååth, Introduction to Bayesian Data Analysis with R]
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MONEY ($ BILL Y’ALL) – FITTING THE MODEL

Unlike in the previous examples when we were trying to estimate the parameters
from the data using a generative model, in this example we are trying to estimate
data from parameters.

[based on Bååth, Introduction to Bayesian Data Analysis with R]

Generate a # of bills 𝑁
through some distribution

𝔇 𝑎, 𝑏, 𝑐, …

1. Mark 𝑥 bills
2. Sample 𝑦 bills
3. Count the # of marked bills 𝑧 in the sample
4. Compare with the actual 𝑤

Repeat to get a distribution of 𝑧’s

𝑥, 𝑦, 𝑤 are given; 𝑧, 𝑁 to be found
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MONEY ($ BILL Y’ALL) – FITTING THE MODEL (SIMPLE)

1. Draw a large random sample of # of bills 𝑁 from an acceptable “prior”
distribution on the parameters.

2. Using the 𝑁 ’s and the generative model (with 𝑥 and 𝑦 given), produce a
(synthetic) # of marked bills 𝑧 in each sample.

3. Retain only those values of 𝑁 values for which 𝑧 = 𝑤.

[based on Bååth, Introduction to Bayesian Data Analysis with R]
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MONEY ($ BILL Y’ALL) – FITTING THE MODEL (SIMPLE)

Prior Posterior

500 1500 500 15001175
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MONEY ($ BILL Y’ALL) – FITTING THE MODEL (SIMPLE)

Prior Posterior

500 1500 500 15001175

𝑃 𝑁 = 1000 𝑧 = 127, 𝐼 ∝ 𝑃 𝑧 = 127 𝑁 = 1000, 𝐼 ×𝑃 𝑁 = 1000 𝐼
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MONEY ($ BILL Y’ALL) – MARKED BILLS ARE BRITTLE (?)

It may be the case that the process of marking the bills might damage them
somehow, so that they may be retired sooner than one would expect (with prob.
90%, say).

[based on Bååth, Introduction to Bayesian Data Analysis with R]

Generate a # of bills 𝑁
through some distribution

𝔇 𝑎, 𝑏, 𝑐, …

1. Mark 𝑥 bills
2. Sample 𝑦 bills, where there is a 𝑢% chance 

of sampling a marked bill compared to an 
unmarked bill

3. Count the # of marked bills 𝑧 in the sample
4. Compare with the actual # 𝑤

Repeat to get a distribution of 𝑧’s

𝑥, 𝑦, 𝑢, 𝑤 are given; 𝑧, 𝑁 to be found
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MONEY ($ BILL Y’ALL) – MARKED BILLS ARE BRITTLE (?)

1. Draw a large random sample of # of bills 𝑁 from an acceptable “prior”
distribution on the parameters.

2. Using the 𝑁’s and the generative model (with 𝑥, 𝑦 and 𝑢 given), produce a
(synthetic) # of marked bills 𝑧 in each sample.

3. Retain only those values of 𝑁 values for which 𝑧 = 𝑤.

[based on Bååth, Introduction to Bayesian Data Analysis with R]
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MONEY ($ BILL Y’ALL) – MARKED BILLS ARE BRITTLE (?)

Prior Posterior

500 1500 500 15001125
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MONEY ($ BILL Y’ALL) – MARKED BILLS ARE BRITTLE (?)

Prior Posterior

500 1500 500 15001125

𝑃 𝑁 = 1000 𝑧 = 127, 𝐼 ∝ 𝑃 𝑧 = 127 𝑁 = 1000, 𝐼 ×𝑃 𝑁 = 1000 𝐼
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MONEY ($ BILL Y’ALL) – LISTEN TO THE BANKER

An old banker thinks that there should be about 1000 bills in circulation. How can we
incorporate this piece of information?

[based on Bååth, Introduction to Bayesian Data Analysis with R]

Generate a # of bills 𝑁
through another distribution

𝔇 𝑎, 𝑏, 𝑐, …

1. Mark 𝑥 bills
2. Sample 𝑦 bills, where there is a 𝑢% chance 

of sampling a marked bill compared to an 
unmarked bill

3. Count the # of marked bills 𝑧 in the sample
4. Compare with the actual # 𝑤

Repeat to get a distribution of 𝑧’s

𝑥, 𝑦, 𝑢, 𝑤 are given; 𝑧, 𝑁 to be found
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MONEY ($ BILL Y’ALL) – LISTEN TO THE BANKER

1. Draw a large random sample of # of bills 𝑁 from a negative binomial distribution.

2. Using the 𝑁’s and the generative model (with 𝑥, 𝑦 and 𝑢 given), produce a
(synthetic) # of marked bills 𝑧 in each sample.

3. Retain only those values of 𝑁 values for which 𝑧 = 𝑤.

[based on Bååth, Introduction to Bayesian Data Analysis with R]
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MONEY ($ BILL Y’ALL) – LISTEN TO THE BANKER

Prior Posterior

500 1500 500 15001075
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MONEY ($ BILL Y’ALL) – LISTEN TO THE BANKER

Prior Posterior

500 1500 500 15001075

𝑃 𝑁 = 1000 𝑧 = 127, 𝐼 ∝ 𝑃 𝑧 = 127 𝑁 = 1000, 𝐼 ×𝑃 𝑁 = 1000 𝐼
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OUTLINE

1. Plausible Reasoning

2. The Rules of Probability

3. Bayes’ Theorem

4. Example: the Fair (?) Coin

5. Example: the Salary Question

6. Example: Money ($ Bill Y’All)

7. Marginalization (coming soon)

8. Prior Distributions

9. Model Selection (coming soon)

10. Naïve Bayes (coming soon)

11. Bayesian Inference (coming soon)

12. MCMC and Numerical Methods

Part 1 Part II
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PRIOR DISTRIBUTIONS
A CURSORY GLANCE AT BAYESIAN ANALYSIS
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PRIOR DISTRIBUTIONS

Specifying a model necessarily means providing a prior distribution for the unknown
parameters.

Prior plays a crucial role in Bayesian inference through the updating statement
𝑝(𝜃|𝐷) ∝ 𝑝(𝜃)×𝑝(𝐷|𝜃)

Choice of prior is subjective (decision to use a prior is left entirely up to the analyst).
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PRIOR DISTRIBUTIONS

But the choice of prior is no more subjective than the choice of likelihood, the
selection of a sample, the estimation framework, or the statistic used for data
reduction.

Choice of prior can affect posterior conclusions, in particular when the sample size is
small.
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CONJUGATE PRIORS

In general: posterior distribution for vector 𝜃 has no simple analytical representation.

Posterior distributions must be estimated numerically (not exact).

Exceptions: conjugate priors

¡ joint property of a prior and a likelihood ⟹ posterior has same form as prior (but with different
parameters)
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CONJUGATE PRIORS

Example:

¡ likelihood = Binomial 𝑃 𝑠, 𝑛 𝑞 = 𝑛
𝑠 𝑞�(1 − 𝑞)�k�, prior = Beta(𝛼, 𝛽)

¡ posterior = Beta(𝛼 + 𝑠, 𝛽 + 𝑛 − 𝑠)
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CONJUGATE PRIORS

Conjugate priors are mathematically convenient, and they can be quite flexible,
depending on the specific hyperparameters we use; but they reflect very specific
prior knowledge and should be eschewed unless we truly possess that prior
knowledge.

Alternatives:

¡ uninformative priors

¡ informative priors

¡ maximum entropy (MaxEnt) priors
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UNINFORMATIVE PRIORS

Uninformative priors intentionally provide very little specific information about the
unknown parameter(s).

Rationale: 'to let the data speak for itself,' so that inferences are unaffected by
information external to the current data.

Classic Example: uniform prior

¡ for data following a Bernoulli(𝜃) distribution, a uniform prior on 𝜃 is 𝑃(𝜃) = 1 on 0 ≤ 𝜃 ≤ 1.

¡ for data following a normal 𝑁(𝜇, 1) distribution, the uniform prior on the support of 𝜇 is improper
however, such a choice could still be acceptable as long as the resulting posterior is
normalizable.
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INFORMATIVE PRIORS

Informative priors are those that deliberately insert information that researchers
have at hand into the analysis.

Reasonable since prior scientific knowledge should play a role in statistical inference.

2 important requirements:

¡ overt declaration of prior specification

¡ detailed sensitivity analysis to show the effect of these priors relative to uninformed types.

Transparency is required to avoid the common pitfall of data fishing; sensitivity
analysis can provide a sense of exactly how informative the prior is.
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INFORMATIVE PRIORS

Where do informative priors come from, in the first place?

¡ past studies, published work, researcher intuition

¡ interviewing domain experts

¡ convenience with conjugacy

¡ non-parametric and other data-derived sources.

Prior information from past studies need not be in agreement.

Useful strategy: construct prior specifications from competing school-of-thoughts
to contrast resulting posteriors and produce informed statements about the relative
strength of each of them.
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INFORMATIVE PRIORS

Example: Bernouilli likelihoods and Beta priors form conjugate priors.

1. Start with a prior distribution that expresses some uncertainty that a coin is fair:
Beta(𝜃 |4, 4) – a coin was recorded with 4H in 8 tosses, perhaps. Flip the coin
once; assume that H is obtained. What is the posterior distribution of the
uncertainty in the coin's fairness 𝜃?

Solution: use post=BernBeta(c(4,4),c(1)) from Example 4.R
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INFORMATIVE PRIORS

2. Use the posterior parameters from the previous flip
as the prior for the next flip. Suppose we flip again
and get a H. What is the new posterior on the
uncertainty in the coin's fairness 𝜃?

Solution: use post=BernBeta(post,c(1))

from Example 4.R
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INFORMATIVE PRIORS

3. Using the most recent posterior as the prior for the
next flip, flip a third time and obtain yet again a H.
What is the new posterior?

Solution: in this case, we know that the posterior for
the coin's fairness 𝜃 follows a Beta(𝜃 |7, 4)
distribution. Does 3H in a row give you pause? Is
there enough evidence to suggest that the coin is
not fair? What if you flipped 18 H in a row from this
point on?
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INFORMATIVE PRIORS

4. Suppose that a friend has a coin that we know
comes from a magic store; as a result, we believe
that the coin is strongly biased in either of the two
directions (it could be a trick coin with both sides
being H, for instance), but we don't know which one
it favours. We will express the belief of this prior as a
Beta distribution.

Let's say that our friend flips the coin five times;
resulting in 4H and 1T. What is the posterior
distribution of the coin's fairness 𝜃?
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MAXIMUM ENTROPY PRIORS

Whether the priors are uninformative or informative, we search for the distribution
that best encodes the prior state of knowledge from a set of trial distributions.

Let 𝑋 be discrete, of cardinality 𝑀, with probability density 𝑝(𝑋) = (𝑝{, … , 𝑝�). The
entropy 𝐻(𝑝) of 𝑝 is

𝐻 𝑝 = −�
l�{

�

𝑝l log 𝑝l , with 0× log 0 = 0
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MAXIMUM ENTROPY PRIORS

The maximum entropy principle (MaxEnt) states:

given a class of trial distributions with constraints, the optimal prior is the trial
distribution with the largest entropy.

As an example, the most basic constraint is for 𝑝 to lie in the probability simplex, that
is, 𝑝{ +⋯+ 𝑝� = 1 and 𝑝l ≥ 0 for all 𝑖.

With those basic constraints, the maximum entropy prior is the uniform distribution.
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MCMC AND NUMERICAL METHODS
A CURSORY GLANCE AT BAYESIAN ANALYSIS
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POSTERIOR DISTRIBUTIONS

Posteriors are used to estimate a variety of model parameters of interest:

¡ mean, median, mode, etc.

It is possible to construct credible intervals/regions directly from the posterior.

Because the posterior is a full distribution on the parameters, it is possible to make all
sorts of probabilistic statements about their values, such as:

¡ “I am 95% sure that the true parameter value is bigger than 0.5”

¡ “There is a 50% chance that 𝜃{ is larger than 𝜃:”

¡ etc.
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POSTERIOR DISTRIBUTIONS – HDI

The best approach is to build a 1 − 𝛼 credible interval of 𝜃-values using the highest
density interval (HDI):

¡ a region 𝐶' in the parameter space

¡ 𝐶' = {𝜃: 𝑝(𝜃|𝐷) ≥ 𝑘}

¡ 𝑘 is the largest number such that ∫�� 𝑝(𝜃|𝐷) 𝑑𝜃 = 1 − 𝛼

The value 𝑘 is the height of a horizontal line (or hyperplane, in the case of
multivariate posteriors) overlaid on the posterior and for which the area under the
curve bounded by the intersections with the hyperplane is 1 − 𝛼. In most cases, 𝑘
can be found numerically.
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POSTERIOR DISTRIBUTIONS – HDI

Example: It is an election year and you are interested in knowing whether the
general population prefers candidate 𝐴 or candidate 𝐵. A recently published poll
states that of 400 randomly sampled people, 232 preferred candidate 𝐴, while the
remainder preferred candidate 𝐵.

1. Suppose that before the poll was published, your prior belief was that the overall
preference follows a uniform distribution. What is the 95% HDI on your belief
after learning of the poll result?

(Hint: what parameters would you use in BernBeta()?)
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POSTERIOR DISTRIBUTIONS – HDI

2. Based on the poll, is it credible to believe that the population is equally divided in
its preferences among candidates?

3. Assume that a subsequent poll of 100 individuals is published. How many people
would have to say that they prefer candidate 𝐵 for you to change the answer you
gave in 2.?
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POSTERIOR DISTRIBUTIONS – HDI
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MCMC METHODS

When posteriors that cannot be manipulated analytically, it is usually possible to
recreate a synthetic (or simulated) set of values that share the properties of the
posterior (Monte Carlo simulations).

A Markov chain is an ordered, indexed set of random variables (a stochastic
process) in which the values of the quantities at a given state depends
probabilistically only on the values of the quantities at the preceding state.

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling
from a probability distribution based on the construction of a Markov chain with the
desired distribution as its equilibrium distribution.
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MCMC METHODS

MCMC techniques are often applied to solve integration and optimization problems
in large-dimensional spaces. For instance, given variables 𝜃 ∈ Θ and data 𝐷, the
following (typically intractable) integration problems are central to Bayesian
inference:

¡ normalisation: 𝑝 𝜃 𝐷 = ¡(¢)¡(£|¢)
∫ ¡(¢)¡(£|¢)¤¢

¡ marginalisation: 𝑝 𝜃 𝐷 = ∫𝑝 𝜃, 𝑥 𝐷 𝑑𝑥

¡ expectation: 𝐸 𝑓 𝜃 = ∫§ 𝑓 𝜃 𝑝 𝜃 𝐷 𝑑𝜃 for functions of interest (i.e. 𝑓 𝜃 = 𝜃 (mean), or
𝑓 𝜃 = 𝜃 − 𝐸[𝜃] : (variance)).
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METROPOLIS-HASTINGS (MH) ALGORITHM

MH is a specific type of MCMC; it generates a random walk (a succession of
posterior samples) so that each step in the walk is completely independent of the
preceding steps; the decision to reject or accept the proposed step is also
independent of the walk's history.

MH uses a candidate or proposal distribution for the posterior and constructs a
Markov Chain by proposing values from this candidate distribution, and then either
accepting or rejecting this value (with a certain probability).

The proposal distributions can be nearly anything, but in practice it is recommended
that (really) simple ones be selected: a normal if the parameter of interest can be any
real number (e.g. 𝜇) or a log-normal if it has positive support (e.g., 𝜎:).
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METROPOLIS-HASTINGS (MH) ALGORITHM
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METROPOLIS-HASTINGS (MH) ALGORITHM

Example: go through Example 9, pp. 10-12 in A Soft Introduction to Bayesian Data
Analysis (DRAFT). The R file is provided in Example 9.R
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BAYESIAN A/B TESTING

Example: go through Example 12, pp. 14-15 in A Soft Introduction to Bayesian Data
Analysis (DRAFT). The R file is provided in Example 12.R
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REFERENCES
A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS
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